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Abstract Negatively buoyant inertial particles are tracked in a steady Taylor vortex background flow with gravity
acting along the axis of the cylinders. Particles are found to either fall through the apparatus due to gravity or to
be within retention zones. The particles within these retention zones tend towards a limit orbit in the meridional
plane. It is found that for particles with density close to that of the background fluid, the size of the retention zone
is relatively large with the centre of the limit orbit being close to that of the Taylor vortex. As the particle density
increases, the size of the retention zone decreases and the centre of the limit orbit moves away from the centre of
the Taylor vortex. The effect of varying the fluid and particle parameters on the retention zone and orbit size is
investigated.
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1 Introduction

Taylor–Couette flow, in which fluid is contained between two concentric rotating cylinders, has been the subject of
many experimental, analytical and numerical studies over the years [1–4]. In the case of the outer cylinder being
fixed, as the rotation rate of the inner cylinder is increased the flow state goes through transitions, the first few being
from laminar flow to steady axisymmetric Taylor vortices to wavy Taylor vortices.

The Couette apparatus is used as a rotating filter for many purposes [5–7]. Specific applications include sepa-
rating plasma from blood [8], a photocatalytic reactor for water purification [9] and a bioreactor for the culture of
animal cells [10]. A recent review of its applications has been written by Vedantam and Joshi [11].

In this paper we compute the paths of small inertial particles in a background flow of steady axisymmetric Taylor
vortices using a form of the particle tracking equations established by Maxey and Riley [12]. These equations and
variations thereof have been used widely for tracking particles in many different background flows; see [13] for an
overview. Much of the work in the Taylor–Couette geometry [5–7] has concentrated on the filtration performance
of the Couette apparatus as a filtration device as opposed to considering the motion of individual particles.

Rudman et al. [14,15] tracked inertial particles in both wavy and non-wavy vortex flow fields. The focus of
their research was the strain history that inertial particles experienced due to their paths and the dispersion of fluid
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Fig. 1 Schematic of the
background flow. A pair of
Taylor vortices, with
wavelength λ ≈ 2 has been
highlighted

particles as opposed to the limiting behaviour of the particles. Wereley and Lueptow [16] simulated the motion of
inertial particles in Taylor–Couette flow using Davey’s [17] analytical representation of the background flow. This
limited the range of Reynolds numbers that could be considered. They were primarily interested in the application
of a rotating filter for water purification in outer-space and therefore mostly considered particles under zero gravity.
Various particle densities were considered and a net radial flow was imposed. They found that, when the buoyancy
force is neglected, all particles approach a limit-cycle orbit around the central region of each Taylor vortex cell.

In previous work, Henderson et al. [18] investigated the effect the individual forces acting on the particle had
on its subsequent motion. A parameter range in which the buoyancy force could be neglected was considered and
hence the particle motion was isolated to a single Taylor cell. The long-term behaviour of the particles was studied
together with the approach to its limiting path as the particle density and Reynolds number of the background flow
were varied. In this work we extend the parameter range previously considered to investigate the limiting behaviour
of particles in Taylor–Couette flow when buoyancy is taken into account.

2 Model

The background flow, computed prior to running the particle tracking code, is steady axisymmetric Taylor vortex
flow as illustrated schematically in Fig. 1. The parameters for the background flow are the radius ratio η = R1/R2

and the Reynolds number of the inner cylinder Re = �R1δ/ν, where R1 and R2 are the radii of the inner and outer
cylinders respectively, δ = R2 − R1 is the gap between the cylinders, � is the angular velocity of the inner cylinder
and ν is the kinematic viscosity of the fluid. Note that the outer cylinder is held stationary.

The numerical method used to compute the steady axisymmetric Taylor vortex background flow is based on a
spectral-collocation scheme [19]. This reference gives details of the accuracy of the scheme. Note that gravity does
not enter into the solution of the fluid flow but the Taylor–Couette apparatus is aligned so that the centre of the
cylinders is in the direction of gravity. In this scheme we time-step the Navier–Stokes equations forward until a
steady-state solution is reached; at this stage the spectral coefficients are stored. The spectral coefficients may be
used to accurately compute components of the background flow at any position (r, z) in the annulus. Throughout
this paper we have used spectral-collocation discretisation parameters 7 and 19 in the axial and radial directions,
respectively.
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The motion of the inertial particles is tracked using a form of the equation taken from Maxey and Riley [12]
with the corrected form for the added mass force, as detailed by Auton et al. [20]. The particles are assumed to be
spherical with radius ap and to be inertial, that is, the particles do not affect the background flow and do not interact
with one another. The equations are nondimensionalised by taking the characteristic length and velocity scales to
be δ and �R1 respectively. The result is the following differential equation for up, the velocity of a particle,

β
dup

dt
= Dv f

Dt
− 1

2

{
dup

dt
− Dv f

Dt

}
+ 1

(Fr)2 (β − 1)̂k − 18α2
p

Re
(up −v f ) = H , (1)

where v f is the fluid’s velocity at the particle’s position; β, the density ratio, is the ratio of the particle density to
the fluid density; αp = 2ap/δ, the particle size ratio, measures the number of particles that would fit tightly across
the radial gap; k̂, the unit vector denoting the direction of the gravitational force, is taken to be parallel to the axis
of the cylinders. The nondimensional parameter Fr, where

Fr = νRe√
gδ3

, (2)

is the Froude number which represents the ratio of inertial to gravitational forces, and g is the magnitude of the
acceleration due to gravity. In Eq. 1 the terms on the right-hand side represent the inertial force (due to the acceler-
ation of the fluid), the added-mass force (which relates to the necessity of moving a mass of fluid displaced by the
particle), the buoyancy term and the Stokes drag force (due to the viscosity of the fluid). Note that in (1) we do not
include the Basset and Saffman forces nor the Faxen corrections as detailed by Mei [21]. Previously [18] we found
that the combined effect of including these terms in the particle tracking equations had a significant quantitative
effect on the limit cycles found for certain parameter ranges. However, in this paper, for ease of computation,
we consider only the forces shown in (1). We anticipate that the results that we obtain from their neglect will be
qualitatively similar to those achieved with these terms included.

Equation 1 may be rearranged, in order to make dup

dt
the subject, as

dup

dt
= γ −1

(
H + 1

2

dup

dt

)
, (3)

where γ = β + 1
2 . This equation needs to be solved together with the differential equation

drp

dt
= up, (4)

and initial conditions

rp(0) = ro
p, up(0) = uo

p, (5)

where rp(t) is the position of the particle at time t . Equations 3–5, which determine the particle path, are solved
numerically using an implicit two-stage Runge–Kutta scheme with fixed-point iteration. A time-step of δt = 4×10−5

was sufficient in order to produce results accurate to at least graphical tolerance.
In previous work [18], where the buoyancy force was neglected, we took the initial velocity of a particle, uo

p ,
to be the same as the fluid velocity at ro

p . In this paper, however, we obtain uo
p by solving Eq. 3 whilst keeping the

particle’s position fixed. This approach eliminates any occurrence of a sharp jump in the particle’s start-up motion
in the case of particle paths differing significantly from fluid-element paths [22].

Although our code is designed to account for particles colliding with the cylinder walls, few of our calculations
result in such events occurring. In cases where collisions with the walls do occur, the collisions are assumed to be
perfectly elastic.

3 Results

For all the results presented in this paper we consider a radius ratio of η = 0.75 to compute the background flow.
The advantage of choosing this particular value is that the Taylor-vortices regime is stable for a relatively wide
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(a) (b)

Fig. 2 Neglecting the buoyancy term (Fr → ∞). a Paths of four particles (β = 5, αp = 30), whose initial positions are denoted by
stars, in a background flow with Reynolds number Re = 130. b Dotted: contour plots of the stream function of the background flow.
Solid: limit cycles, in the meridional plane, of the particles shown in (a)

range of Reynolds numbers [2,23], that is the onset of wavy Taylor vortices occurs at values of Re much higher
than Re∗ = 85.8, the critical Reynolds number at which Couette flow becomes unstable.

All plots are over a period λ of the background flow; see Fig. 1, which contains a pair of Taylor cells. The rotat-
ing inner cylinder forms the left vertical boundary and the stationary outer cylinder forms the right-hand vertical
boundary. The chosen period is such that the top Taylor cell rotates counter-clockwise with the bottom Taylor cell
rotating clockwise.

In Fig. 2 we illustrate the behaviour of particles when the buoyancy term is neglected (Fr → ∞). Similar results
have been presented in [16,18]. The consequence of neglecting the buoyancy term is that particles starting within a
Taylor cell remain in that Taylor cell. In Fig. 2a we plot the projection in the meridional plane of the paths of four
particles (β = 5, αp = 30) with different initial positions in a background flow with Re = 130. The paths can be
considered to be a superposition of azimuthal motion about the inner cylinder and toroidal motion in the vertical
plane. For a given Taylor cell, all particles starting within the cell tend towards a limit cycle in the meridional plane,
contained within that cell. A pair of Taylor cells is shown in Fig. 2a and within each cell there are two particles,
whose initial positions are inside and outside of their associated limit cycle. The figure displays the motion of these
particles towards their limit cycle, which is contained in the darker region of Fig. 2a and plotted in Fig. 2b by a solid
line. Wereley and Lueptow [16] considered the radial component of the forces acting on particles inside, on and
outside the limit orbit. They concluded that it was the relative balance of the inertial and drag forces that determined
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(a) (b) (c) (d)

Fig. 3 The paths of several particles (αp = 30) with a β = 1.01, b β = 1.05, c β = 1.1, d β = 1.5, in a flow of Re = 130. Gravity is
acting downwards

the position of the particle relative to its original radial position near the inner cylinder after each revolution.
Figure 2b displays the limit cycles against contours of the stream function, which correspond to fluid-element
paths. As reported previously [16,18] we observe that the limit cycles are different to the fluid-element paths.

The darker banded region in Fig. 2a is due to the progressively slower rate that the particles (from both inside
and outside the limit cycle) approach their limit cycle. A relatively large value of β has been used here to better
illustrate the features of the particle paths; a similar qualitative behaviour is observed for all β > 1 [16,18]. The
effect of changing β on the approach to the limit cycle has been considered in detail in previous work [18] and,
using lower values of β, results in a slower rate of approach to the limit orbit. Thus, if a physically realistic value
of β had been used for Fig. 2, the banded region would been more pronounced which would have visually masked
the individual particle paths to an even greater extent.

Our key aim in this paper is to better understand the behaviour of particles when the buoyancy term is taken into
account, through Eq. 1. In particular we want to examine the effect of varying the particle parameters (β, αp) and
the flow parameters (Re, Fr) on the limiting behaviour of the particles.

In Fig. 3 we illustrate the behaviour of the particles when gravity is taken into account. This is taken to act
downwards, parallel to the axis of the cylinders. The stream function for the background flow is as in Fig. 2b. The
value of Fr = 1×10−3Re is used in this and all subsequent figures except for Fig. 8. All particles have αp = 30 and
are in a background flow with Re = 130. The density ratios are taken to be β = 1.01, 1.05, 1.1, 1.5 in Fig. 3a–d,
respectively.

For density ratios close to unity (Fig. 3a) we find that particles which are initially in the inflow, at the top of
the Taylor vortex pair (z = 2π/α ≈ 2) wind around the Taylor vortices, falling close to the inner cylinder in the
counter-clockwise (top) cell and close to the outer cylinder in the clockwise (bottom) cell. We only plot a pair of
Taylor cells here, but because the background flow is periodic with period λ this winding behaviour would continue
as the particles fall through the apparatus. Not all particles fall through the apparatus. Some get caught in a cycling
motion and the region containing such particles is referred to as the retention zone [14]. Within both retention zones
of Fig. 3a the particle paths have been plotted over a small number of periods. What is not clear from the figure is
that, given a particular retention zone, all the cycling particles tend towards a unique limit cycle. Had we continued
the particle tracking of Fig. 3a over a longer period of time then the retention zone would contain a large dark region
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(a) (b) (c)

Fig. 4 a β = 1.01, b β = 1.05, c β = 1.1. Solid lines: limit cycles; dotted lines: the paths of several particles which fall through the
Taylor cells. The shaded areas represent the retention zones. Flow/particle parameters: αp = 30, Re = 130

due to the banding effect described earlier, related to Fig. 2a. Hence, within the retention zones of Fig. 3a, some of
the particles are slowly moving inwards towards the limit cycle whilst some are moving outwards towards the same
limit cycle.

With higher density ratios such as β = 1.05 and β = 1.1 (Fig. 3b, c) a greater proportion of the particles follow
the winding motion and hence will fall through the Taylor cells. For both these cases retention zones still exist, but
their size is reduced as β is increased. In addition, the retention zones are offset, that is, the centre of the retention
zone in the counter-clockwise Taylor cell is closer to the outer cylinder and the centre of the retention zone of the
clockwise Taylor cell is closer to the inner cylinder. This effect is more pronounced as β is increased.

For even higher density ratios such as β = 1.5 (Fig. 3d) retention zones no longer exist and all particles fall
through the cells. Similar qualitative results have been presented by Rudman [14] and Wereley and Lueptow [16].

In Fig. 4 we plot the retention zones (shaded) and limit cycles (solid lines) corresponding to Fig. 3a–c. The dashed
lines correspond to particles paths of some falling particles.

Both the limit cycles and subsequent retention zones are calculated using a bisection method approach. The limit
cycle is the line that partitions particles that spiral outwards towards the limit cycle from those that spiral inwards,
or fall through the Taylor cell. The limit cycle obtained by the bisection method approach has been verified by
starting with two particles (one spiraling inwards and the other outwards) and running the particle tracking code
until the two particles have reached the limit cycle. The retention zone is the region that partitions particles that
spiral inwards towards the limit cycle from those that fall through the Taylor cell. We note that falling (winding)
particles may get attracted into retention zones of Taylor cells below the one in which they start. This occurs for
a small number of particles that start on particle paths that pass close to the retention zone. For finite aspect ratio
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(a) (b)

Fig. 5 a Limit cycles and b Retention zones for β = 1.001,

1.005, 1.01, 1.05, 1.1, 1.15. The arrows show the direction of
decreasing β. Flow/particle parameters: αp = 30, Re = 130

(a) (b)

Fig. 6 a Limit cycles and b retention zones for αp = 15, 17.5,
20, 30, 40, 50. The arrows show the direction of increasing αp .
Note that for αp = 15 there is a limit point in the clockwise
cell, illustrated by a star, but no limit point exists in the counter-
clockwise cell. Flow/particle parameters: β = 1.05, Re = 130

apparatus, this would mean that the limit orbits in the cells at the bottom of the apparatus would contain slightly
more particles than those at the top.

All particles within a retention zone will remain in that retention zone and tend to the corresponding limit cycle.
From Fig. 4 we can see that both the limit cycles and their associated retention zones decrease in size as β is
increased and become more offset. In addition, there is a difference between the retention zones and limit cycles
corresponding to the two Taylor cells, which is most pronounced as β increases. In this case, the limit cycle for the
clockwise cell is smaller than that of the counter-clockwise cell and the limit cycle in the top cell is much closer to
the edge of the retention zone than in the lower cell.

In Fig. 5 we plot the limit cycles and retention zones for various values of β > 1 for particles with αp = 30
and background flow of Re = 130. We can see that as the density ratio increases the size of both the limit orbits
and the retention zones decreases, hence the proportion of particles attracted to these limit orbits also decreases. In
addition as β increases we find that the centres of both the limit cycles and retention zones move from the centre
of the Taylor cell. In the clockwise Taylor cell, increasing β results in the limit cycle and retention zone moving
towards the inner cylinder. In the counter-clockwise Taylor cell the opposite is the case. Further, in terms of the
size of both the limit cycle and retention zone, the differences between the clockwise and counter-clockwise Taylor
cells are more pronounced as β increases.

For values of β close to unity, the buoyancy term in (1) becomes less important. As a result, the resulting limit
cycles are very close to each other and to that obtained when buoyancy is neglected [18]. As expected, as the values
of β approach unity, the retention zones approach the full Taylor cell.

In Fig. 6 we plot the limit cycles and retention zones for various values of αp for particles with β = 1.05 and flow
Re = 130. We can see that as the particle size ratio increases, the size of both the limit orbits and the retention zones
decrease and their centres move away from the centre of the Taylor cell, as for the case of increasing β. For the
particular case of αp = 15 we find a limit point, as opposed to a limit cycle in the clockwise Taylor cell, illustrated
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(a) (b)

Fig. 7 a Limit cycles and b retention zones for Re = 100,

110, 120, 130, 150, 200, 300. The arrows show the direction of
increasing Re. Limit points are found for Re = 100 and illus-
trated by a star. Particle parameters: β = 1.05, αp = 30

(a) (b)

Fig. 8 a Limit cycles and b retention zones for Fr/Re = 7.5 ×
10−4, 1 × 10−3, 1.5 × 10−3, 2 × 10−3, 5 × 10−3, 1 × 10−2. The
arrows show the direction of increasing Fr/Re. A limit point is
found for Fr/Re = 5 × 10−4 in the clockwise cell only and
this is illustrated by a star. Flow/particle parameters: Re = 130,
β = 1.05, αp = 30

in Fig. 6a by a star, and all particles within the corresponding retention zone will spiral towards this point. No limit
point/cycle was found in the counter-clockwise cell and therefore no retention zone exists for αp = 15 in this cell.
In the case that no limit point/cycle exists we find that all particles will eventually fall through the cell leaving a
void. Depending on the particle’s initial position this can occur either immediately or after the particle follows an
outwardly spiralling path for a number of revolutions.

In Fig. 7 we plot the limit cycles and retention zones for various values of Re for particles with β = 1.05 and
αp = 30. We find that the limit cycles increase in size as the Reynolds number is increased. This was also observed
in the zero gravity case [18]. For Re = 100 we find a limit point as opposed to a limit orbit. Note that for this case
the retention zone is quite large and we find that as the Reynolds number is reduced further, a limit point persists but
that the retention zone shrinks in size. For the flow parameters shown here, the critical Reynolds number at which
vortices disappear is Re = 85.8.

In Fig. 8 we plot the limit cycles and retention zones for various values of Fr/Re for particles with β = 1.05 and
αp = 30 in a flow with Re = 130. We find that the effect of increasing Fr/Re is qualitatively similar to increasing
both β and αp. Note that for Fr/Re = 5 × 10−4 there are no limit cycles but a limit point is found in the bottom
Taylor cell only. The limit cycles for Fr/Re = 5 × 10−3 and Fr/Re = 1 × 10−2 are indistinguishable from each
other and correspond to the limit orbits found when buoyancy effects are neglected.

4 Conclusion

We have computed the path of negatively buoyant particles in a Taylor vortex for cases when the buoyancy term
in the particle tracking equations may not be neglected. Our results are interesting in that we find that for certain
parameter regimes particles follow paths which tend to limit orbits which are very different to fluid-element paths.
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This shows that care needs to be exercised in choosing tracer particles depending on what flow properties are to
be visualised. Particles with high density ratio fall through the cells but as the density ratio is reduced we find that
retention zones exist. Particles within these zones tend to a limit cycle or limit point in the meridional plane, whilst
those particles which are not in these retention zones fall through the Taylor cells. For particles with density close
to that of the fluid, this fall occurs in a winding motion about the Taylor vortices.

The key aim of this paper was to consider the effect of varying the particle parameters β and αp and the flow
parameters Re and Fr on the nature of the limit cycles and associated retention zones. We find that the limit cycles
and retention zones reduce in size as the density ratio is increased and also for decreasing particle size ratio. A sim-
ilar behaviour is seen for increasing Re and decreasing Fr/Re. In addition, for the cases when β is increased, αp

is decreased and Fr/Re is decreased, the centres of the limit cycles move away from the centre of the Taylor cells;
being closer to the outer cylinder wall in the counter-clockwise Taylor cell and closer to the inner cylinder wall in
the clockwise Taylor cell. Differences in the size and shape of the two limit cycles in each pair of Taylor cells occur
and in some cases we find a retention zone in the clockwise Taylor cell only.

Kawai et al. [24] recently set up an experiment to visualise for the first time the limit orbits predicted numerically
[16,18]. They used a small aspect ratio Couette apparatus and were able to visualise limit orbits under certain con-
ditions. Our results will hopefully provide the motivation for further experiments in this area and give an indication
as to parameter regimes in which limit orbits may be found.
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